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In this paper a novel approach for monitoring tool-related faults in milling processes by utilizing process 

simulation-based machine learning algorithms, specifically Random Forest algorithms, for fault detection is 

presented. In order to train machine learning models in tool condition monitoring, laboratory tests have 

traditionally been required. This method eliminates the need for costly, time-consuming laboratory tests.  

The training process has been simplified by utilizing analytical simulation data and provides a more cost-effective 

solution by leveraging analytical simulation data. Based on the results of this study, the proposed approach has 

been demonstrated to be 94% accurate at predicting tool-related faults, demonstrating its potential to serve as an 

efficient and viable alternative to conventional methods. These findings have been supported by actual 

measurement data, with a notable accuracy rate of 93% in the predictions. Furthermore, the results indicate that 

process simulation-based machine learning algorithms will have a significant impact on the tools condition 

monitoring and the efficiency of manufacturing processes more generally. To further enhance the capabilities  

of the proposed fault monitoring system, process-related and machine-related faults will be investigated in future 

research. Several machine learning algorithms will be explored as well as additional data sources will be integrated 

in order to enhance the accuracy and reliability of fault detection.  

1. INTRODUCTION 

 These days, modern manufacturing industry are constantly striving to improve 

production efficiency, reduce costs, and maintain high product quality standards. Cutting tool 

condition is a key factor that influences these objectives in milling processes. Tool condition 

monitoring (TCM) is important because it helps to predict and detect tool faults and failure, 

resulting in reduced machine downtime, improved product quality, and more efficient tool 

replacement procedures. By applying machine learning algorithms for tool condition 

monitoring in milling processes, TCM will be more practical by utilizing data-driven 

techniques. 
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In subtractive manufacturing, milling is the process by which materials are removed 

from workpieces with rotating cutting tools in order to achieve the desired shapes and 

features. It is known that the performance of cutting tools deteriorates over time as a result  

of wear, breakage, and chipping, which can result in undesirable consequences such as 

increased production costs, a decrease in product quality, and a longer production cycle. In 

modern manufacturing, milling process simulations have become an integral part of the 

process, as they enable engineers to analyse and optimize various aspects of the machining 

process without having to conduct physical experiments. These simulations are particularly 

beneficial when using analytical methods for calculating cutting forces because they provide 

a comprehensive understanding of how the cutting tool interacts with the workpiece. A variety 

of factors are considered in these models, including tool geometry, workpiece material 

properties, cutting speed, feed rate, and depth of cut. Mechanic models, oblique cutting 

theories, and linear edge force models are common analytical methods.  The linear edge force 

model is an analytical method used to predict cutting forces in milling processes. Using this 

simplified approach, it is possible to estimate the force experienced during machining by 

considering the cutting forces acting along the cutting edge of the milling tool. There are 

certain cases where the linear edge force model is particularly useful, such as when cutting 

conditions are stable and the cutting-edge engagement with the workpiece is relatively 

constant. 

The linear edge force model [1] is based on the idea that the cutting forces acting on the 

tool can be represented as a linear distribution of force components along the cutting edge. 

These force components typically include the tangential force (Ft), radial force (Fr), and axial 

force (Fa). The model divides the cutting edge into small segments, and the forces acting on 

each segment are calculated based on the chip thickness, cutting speed, and other relevant 

parameters. The linear edge force model offers several advantages in milling process 

simulations, such as its simplicity and relatively low computational requirements. This model 

can provide a reasonable estimation of cutting forces, which can be used for optimizing 

machining parameters, tool geometries, and cutting strategies. However, it is essential to 

consider the limitations of the linear edge force model, such as its reliance on the assumption 

of constant cutting-edge engagement and stable cutting conditions. 

Traditionally, TCM has been approached through various methods such as direct 

observation, indirect monitoring using sensors, and statistical process control. While these 

methods have proven useful to some extent, they often suffer from limitations such as 

subjectivity, low sensitivity (small changing in input parameters), and a lack of adaptability 

to varying cutting conditions. Implementing tool condition monitoring in milling operations 

can lead to several benefits, such as reduced machine downtime, improved product quality, 

extended tool life, and optimized tool replacement scheduling. Additionally, TCM can be 

integrated with Industry 4.0 technologies, such as internet of things(IoT) and cloud 

computing, to enable remote and centralized monitoring of multiple milling machines in  

a manufacturing facility. In recent years, the emergence of machine learning algorithms has 

opened new approaches for TCM, offering a more sophisticated and data-driven approach to 

the problem. 

As machine learning algorithms are capable of processing large amounts of data and 

learning complex patterns, they are particularly suitable for TCM applications involving 
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multiple factors, such as cutting forces, vibrations, and acoustic emissions. In order to prevent 

and detect tool failure more accurately and in real-time, machine learning models are trained 

on simulation data from milling processes. This allows tool maintenance and replacement to 

be approached in a more proactive manner. 

This paper will investigate various machine learning algorithms, such as Multiple Linear 

Regression, K-Nearest Neighbor (KNN), and Random Forest, in the context of TCM for 

milling processes. The performance of these algorithms has been assessed in terms of 

accuracy, sensitivity, and robustness, and provide recommendations for their practical imple-

mentation in industrial settings. 

Typically, measuring cutting forces serves as an indirect approach for real-time tool 

condition monitoring [2]. The amplitude of cutting force is used in milling operations as  

a means of monitoring flank wear. In some studies, online tool condition monitoring systems 

based on cutting forces has been developed [3]. During the milling process, tool wear was 

monitored by measuring the average cutting force, revealing that the variation in cutting force 

consistently increased throughout the machining process. This observation confirmed that 

cutting tools progressively lost their sharp edges and became worn [4, 5]. Artificial Neural 

Network (ANN) based tool condition monitoring systems were developed using cutting force 

signals in milling processes to predict flank wear and surface roughness, indicating that 

cutting force signals increased alongside tool wear [6]. Tool wear in face milling was 

estimated using the Normalized Cutting Force (NCF) indicator and the Torque-Force 

Distance (TFD) indicator. The TFD method was found to be superior to NCF, as it remained 

unaffected by cutting parameters and their interactions [7]. An analysis of wear progression 

and changes in cutting force was conducted for coated carbide tools. This study illustrates 

that flank wear was the primary failure mode and had a significant impact on the tool's life 

[8]. Tool wear in the milling process was monitored using cutting force as the monitoring 

signal and the Continuous Hidden Markov Model (CHMM) as a diagnostic technique [9].  

By tracking the tangential and radial cutting force coefficients during the end milling process, 

tool wear was monitored. The behaviour of these cutting force coefficients was found to be 

independent of cutting conditions and correlated with tool wear [10]. Tool Condition 

Monitoring systems (TCMs) for Glass Fiber Reinforced Plastic (GFRP) composite end 

milling were developed using cutting force signals and the Adaptive Network-based Fuzzy 

Inference System (ANFIS). The findings confirmed that ANFIS-based feed force data 

accurately predicted tool wear [11]. 

The tool condition was predicted using various decision-making algorithms based  

on the extracted features. Decision-making algorithms play a crucial role in the development 

of Tool Condition Monitoring systems (TCMs). A wide range of techniques has been 

explored to automate TCMs, such as Probabilistic Neural Network (PNN) [12], Support 

Vector Regression (SVR) [13], Support Vector Machine (SVM) [14], pattern recognition, 

Artificial Neural Networks (ANN) [15, 16], fuzzy logic [17, 18], and genetic algorithms [19]. 

More recently, researchers have employed the Hidden Markov Model [9], ANFIS [11], and 

Decision Trees [20] to predict tool conditions.  

In this work the data mining freeware named “WEKA” was used for feature 

classification. Among all classifiers, the random forest classifiers yield the highest 

classification accuracy. As a result, this study compared tree classifiers to determine the best 
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among them. Other algorithms, such as the KNN algorithm, Naïve Bayes, and LWL, can also 

be employed if they offer superior classification accuracy. In this case, tree classifiers, 

including J48, Logistic Model Tree, and Random Forest algorithms are used to classify 

different milling cutter conditions based on a 10-fold cross-validation. Classification 

validation is demonstrated using a confusion matrix, as it effectively categorizes distinct tool 

conditions. 

This study presents a novel approach to tool-related fault detection in milling processes 

by leveraging machine learning algorithms and simulation data. Utilizing machine learning 

algorithms typically requires a substantial number of tests with various cutting parameters to 

achieve satisfactory results, which can consume significant time and financial resources. By 

training machine learning algorithms with milling process simulation data, the drawbacks 

associated with conducting extensive cutting tests have been effectively circumvented. To 

accomplish this, the simulations generate a comprehensive milling process database by 

performing numerous simulations with varying input parameters. Subsequently, the machine 

learning algorithms were trained using these databases. Finally, this method can identify 

potential tool-related faults in milling processes. As demonstrated in the results section of this 

study, the proposed algorithm exhibits a high degree of accuracy in detecting various tool-

related faults. 

2. MILLING FORCE MODEL 

In the present study, the linear edge force model [21] is employed to calculate milling 

forces for end-milling tools and these simulations were calibrated using measured test data 

and machine learning algorithms. In order to this input parameters and results of simulation 

are used as inputs for machine learning algorithms and the outputs of machine learning 

algorithms were measured data. By using this method, the accuracy of analytical simulations 

has been improved. To determine cutting forces for each angular increment of the tool, 

differential forces are computed for every axial element (i) on each tooth (j) at a specific 

rotational position (𝜙) throughout a complete rotation of the cutting tool: 

𝜑𝑖,𝑗(𝜙) =  𝜑𝑖,𝑗 + 𝜙 

𝑑𝐹𝑟(𝑖, 𝑗, 𝜙) = 𝑔 (𝜑𝑖,𝑗(𝜙)) [𝐾𝑟𝑒 + 𝐾𝑟𝑐(𝑖, 𝑗)ℎ𝑖,𝑗(𝜙)]𝑑𝑧 

𝑑𝐹𝑡(𝑖, 𝑗, 𝜙) = 𝑔 (𝜑𝑖,𝑗(𝜙)) [𝐾𝑡𝑒 + 𝐾𝑡𝑐(𝑖, 𝑗)ℎ𝑖,𝑗(𝜙)]𝑑𝑧 

𝑑𝐹𝑎(𝑖, 𝑗, 𝜙) = 𝑔 (𝜑𝑖,𝑗(𝜙)) [𝐾𝑎𝑐(𝑖, 𝑗)ℎ𝑖,𝑗(𝜙)]𝑑𝑧 

(1) 

Where the cutting force coefficients 𝐾𝑟𝑐 , 𝐾𝑡𝑐 and 𝐾𝑎𝑐  are calculated using the oblique 

cutting force model, combined with orthogonal cutting data [21], while taking into account 

local oblique angles (𝜂𝑖,𝑗) for each element. The edge force coefficients 𝐾𝑟𝑒 , 𝐾𝑡𝑒  and 𝐾𝑎𝑒 are 

typically determined from cutting tests, but can also be predicted using thermo-mechanical 

models applied to the third deformation zone [22]. In calculating the force coefficients,  

the rake angle on the cutting edges is assumed to be constant; however, it may vary along  

the cutting edges depending on the manufacturing process of these tools. In such cases,  

the local rake angle should be utilized in force coefficient calculations [21, 23]. 
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The binary function 𝑔(𝜑𝑖,𝑗(𝜙)) equals 1 when the element is in cut (i.e.  𝜑𝑠𝑡𝑎𝑟𝑡 ≤

𝜑𝑖,𝑗(𝜙) ≤ 𝜑𝑒𝑥𝑖𝑡  and 0 otherwise. 𝜑𝑖,𝑗(𝜙) represents the angular position of each point on the 

edge when the tool's rotation angle is 𝜙. 𝑑𝑧 denotes the thickness of each axial element. As 

depicted in Fig. , Δ𝜑𝑖,𝑗 differs for each edge at a specific axial position, and therefore, ℎ𝑖,𝑗(𝜙) 

(chip thickness) can be defined as follows: 

                                                 ℎ𝑖,𝑗(𝜙) =
Δ𝜑𝑖,𝑗

2𝜋
 𝑁𝑓 sin (𝜑𝑖,𝑗(𝜙))   (2) 

where N represents the number of teeth and f corresponds to the nominal feed per tooth. 

The total forces in 𝑥, 𝑦, 𝑧 directions for angular orientation of the tool can be obtained 

by summation of the elemental differential forces: 

𝐹𝑥(𝜙) =  ∑ ∑ [−𝑑𝐹𝑟(𝑖, 𝑗, 𝜙) 𝑠𝑖𝑛 (𝜑𝑖,𝑗(𝜙)) −  𝑑𝐹𝑡(𝑖, 𝑗, 𝜙) 𝑐𝑜𝑠 (𝜑𝑖,𝑗(𝜙))]

𝑁𝑡

𝑗=1

𝑎

𝑖=0

 

𝐹𝑦(𝜙) =  ∑ ∑ [−𝑑𝐹𝑟(𝑖, 𝑗, 𝜙) 𝑐𝑜𝑠 (𝜑𝑖,𝑗(𝜙)) +  𝑑𝐹𝑡(𝑖, 𝑗, 𝜙) 𝑠𝑖𝑛 (𝜑𝑖,𝑗(𝜙))]

𝑁𝑡

𝑗=1

𝑎

𝑖=0

 

𝐹𝑧(𝜙) =  ∑ ∑ 𝑑𝐹𝑎(𝑖, 𝑗, 𝜙)

𝑁𝑡

𝑗=1

𝑎

𝑖=0

 

(3) 

 

Fig. 1. The schematic view of the milling cutting force directions [24] 

3. APPLIED MACHINE LEARNING FOR FAULT DETECTION 

Since fault diagnosis is the most challenging aspect of process and machine repair, the 

majority of downtime is spent localizing the fault rather than addressing it [25]. Consequently, 

organizations are exploring innovative methods to enhance the root cause analysis (RCA) 

process for faults. 

As a first step, it is essential to define the problem and determine the appropriate data 

analytics techniques. In order to make the required data suitable for further analysis, it is 

necessary to collect, and preprocess the data based on the problem and the selected method. 
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As a result, developing, and evaluating a data model is vital. To resolve the issue, the 

outcomes are examined. The process is typically repeated several times in order to achieve 

better results. 

Based on the type of input data and the type of learning system, machine learning 

algorithms can be divided into three categories. In supervised learning, algorithms are trained 

to map inputs to known outputs (provided by experts). In unsupervised learning, models or 

functions are developed without incorporating any previously known outputs. This approach 

typically analyses large datasets to discover meaningful patterns or classifications. 

Additionally, reinforcement learning allows a machine to determine its performance based on 

a reward signal that has been previously defined. 

Two major objectives of these algorithms are to classify or cluster data, and to identify 

a trend or relationship over time, respectively. This study investigated a number of machine 

learning algorithms for data training and fault detection and selected three algorithms based 

on the results: Multiple Linear Regression, K-Nearest Neighbor (KNN), and Random Forest. 

Multiple Linear Regression (MLR): Multiple linear regression is a statistical method 

used to model the relationship between a dependent variable and two or more independent 

variables. It is an extension of simple linear regression, which involves only one independent 

variable. The primary goal of multiple linear regression is to create a predictive model that 

can estimate the value of the dependent variable based on the values of the independent 

variables. The multiple linear regression model takes the form: 

y = β0 + β1 * x1 + β2 * x2 + ... + βn * xn + ε                        (4) 

Here, y represents the dependent variable, x1, x2, ..., xn are the independent variables, β0 

is the intercept, β1, β2, ..., βn are the regression coefficients, and ε is the residual or error term, 

which accounts for the variation in the data not explained by the model. 

The regression coefficients (β1, β2, ..., βn) represent the change in the dependent variable 

associated with a one-unit change in the corresponding independent variable, while holding 

all other variables constant. These coefficients are estimated using a technique called ordinary 

least squares (OLS), which minimizes the sum of the squared differences between the 

observed values of the dependent variable and the values predicted by the model. 

K-Nearest Neighbor (KNN): K-Nearest Neighbor (KNN) is a non-parametric, 

instance-based, supervised learning algorithm used for classification and regression tasks. It 

is considered one of the simplest and most intuitive machine learning algorithms, owing to its 

easy-to-understand approach and minimal training requirements. In KNN, the prediction for 

a new data point is determined based on the K closest data points (neighbours) from the 

training dataset. The algorithm operates under the assumption that similar data points are 

located near each other in the feature space. Euclidean distance is a commonly used distance 

metric in the KNN algorithm. It is the straight-line distance between two points in an n-

dimensional space [26, 27]. The algorithm calculates the Euclidean distance between the new 

data point and every point in the training dataset, then sorts these distances in ascending order. 

The choice of K is crucial in KNN, as it directly affects the algorithm's performance.  

A small value of K might result in overfitting, while a large value of K can lead to underfitting. 

Typically, the optimal value of K is determined through techniques like cross-validation. 

KNN is sensitive to the scale of the input features, so it is often necessary to normalize or 

standardize the data before applying the algorithm. Furthermore, KNN is sensitive to the 
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presence of irrelevant or noisy features, which can negatively impact its performance. Feature 

selection techniques can help mitigate this issue. 

Below is a simple pseudocode for the K-Nearest Neighbor (KNN) algorithm for 

classification: 

• Function KNN_Classify (new_data_point, training_data, K): 

• Initialize an empty list called distances_list. 

• For each data_point in training_data: 

• Calculate the distance (e.g., Euclidean distance) between new_data_point and data 

point. 

• Add (distance, data_point's class) to the distances_list. 

• End For 

• Sort distances_list in ascending order of distance 

• Select the first K elements from the sorted distances_list. 

• Initialize an empty dictionary called class_votes. 

• For each (distance, class) in the K selected elements: 

• If class is not in class_votes: 

• class_votes[class] = 0 

• End If 

• class_votes[class] += 1 

• End For 

• Determine the class with the highest vote in class_votes. 

• Return the class with the highest vote as the prediction for new_data_point. 

Random Forest (RF): Random Forest is an ensemble learning method used for both 

classification and regression tasks. It operates by constructing multiple decision trees during 

the training phase and then aggregating their outputs to make a final prediction. The main 

idea behind the Random Forest algorithm is to combine the results of multiple weak learners 

(decision trees) to obtain a more accurate and robust model. It is particularly effective for 

handling high-dimensional data and can address classification and regression problems. 

Here's the logic behind how Random Forest works: 

1. Bootstrapping: For a given dataset, Random Forest creates multiple bootstrap 

samples by randomly selecting data points with replacement. Each bootstrap sample 

is used to train a separate decision tree. 

2. Feature Randomness: During the process of growing individual decision trees, at 

each node, a random subset of features is selected to determine the best split. This 

random feature selection introduces diversity among the trees and reduces the 

correlation between them. 

3. Decision Tree Construction: A decision tree is built for each bootstrap sample using 

the selected features at each node. The tree construction continues until a maximum 

depth is reached or a minimum number of samples per leaf is obtained. 

4. Aggregating Predictions: Once all decision trees are constructed, the Random Forest 

algorithm makes a prediction by combining the predictions of all trees. For classifi-

cation problems, this is typically done by taking the majority vote among the tree 

predictions. For regression problems, the average prediction of all trees is used. 
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In addition to reducing overfitting risk, the Random Forest algorithm also improves 

model generalization by combining predictions from multiple decision trees. Furthermore, 

this algorithm is robust to noise and can handle a large dataset, making it an excellent choice 

for a variety of machine learning applications. 

Here's a pseudocode representation of the Random Forest algorithm: 

Procedure Random_Forest (training_data, num_trees, max_depth, min_samples_leaf, 

max_features): 

• Initialize an empty list called forest. 

• For i = 1 to num_trees: 

     a. Bootstrap_sample = Create_Bootstrap_Sample(training_data) 

    b. Tree = Build_Decision_Tree (Bootstrap_sample, max_depth, min_samples_leaf, 

max_features) 

     c. Add Tree to forest. 

• Return forest. 

Procedure Create_Bootstrap_Sample(data): 

• Randomly select data points with replacement from the given data. 

• Return the created bootstrap sample. 

Procedure Build_Decision_Tree (data, max_depth, min_samples_leaf, max_features): 

• If max_depth is reached or the number of samples in data is less than or equal to 

min_samples_leaf: 

     a. Return a leaf node with the majority class (classification) or average value 

(regression) of data. 

• Randomly select a subset of features up to max_features. 

• Determine the best split using the selected features. 

• Split the data into left and right subsets based on the best split. 

• left_child = Build_Decision_Tree (left_subset, max_depth, min_samples_leaf, 

max_features) 

• right_child = Build_Decision_Tree (right_subset, max_depth, min_samples_leaf, 

max_features) 

• Return a decision node with the best split and left_child, right_child as its children. 

Procedure Predict (forest, test_data): 

• Initialize an empty list called predictions. 

• For each test_point in test_data: 

     a. tree_predictions = [tree. predict (test_point) for tree in forest] 

     b. prediction = Majority_Vote (tree_predictions) (classification) or Mean  

(tree_predictions) (regression) 

     c. Add prediction to predictions. 

• Return predictions. 

3.1. DATASET FOR TRAINING MACHINE LEARNING ALGORITHMS 

As a result of the application of an algorithm based on process simulation, significant 

advancements have been made in the monitoring of tool condition. Tool-related faults can be 
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detected more effectively and economically by eliminating extensive laboratory testing. As  

a result of this research and development, this approach can help tool condition monitoring to 

be more practical and enhance manufacturing processes in general. As mentioned before, in 

order to predict by machine learning, the algorithms must train by the acceptable portion of 

datasets. A common practice is to split the dataset into the following portions: 

1. Training set: This subset is used for training the machine learning model. The model 

learns the patterns and relationships within the data. A typical proportion for the 

training set is around 70%–80% of the entire dataset. 

2. Test set: This subset is used to evaluate the performance of the trained model. It is 

crucial that the test set is separate from the training set and is not used during the 

training process. The test set typically comprises 20%–30% of the entire dataset. 

3.2. NPUTS AND OUTPUTS OF TRAINED DATASET PARAMETERS 

To perform a milling simulation, several inputs are required to represent the milling 

process accurately. Some of the essential inputs include: 

• Tool geometry: This includes the tool's radius, number of teeth, helix angle, rake 

angle, and cutting-edge geometry. These parameters are crucial for simulating the 

tool's interaction with the workpiece. 

• Workpiece material: The material properties of the workpiece and cutting force 

coefficients during the milling process. 

• Cutting conditions: These include cutting parameters such as spindle speed, feed rate, 

and depth of cut, which affect the cutting forces. 

• Cutting tool material: The cutting tool material affects the tool's performance, wear 

resistance, and cutting forces. Common cutting tool materials include high-speed 

steel (HSS), carbide, and polycrystalline diamond (PCD). 

• Coolant and lubrication: The type and application method of coolant or lubricant used 

in the milling process impact the tool's temperature, cutting forces, and chip 

formation. 

The input parameters employed for constructing the database in this study are follows: 

• Tool diameter: 10, 14, 18 and 20 mm. 

• Teeth number: 3,4, and 6. 

• Tool helix angle: 30, 35, and 45°. 

• Tool rake angle: 5, 7 and 11°. 

• Spindle speed: 4000, 6000 and 8000 rpm. 

• Feed per revolution per tooth: 0.1, 0.3, 0.5, 0.7, 0.9 and 1. mm/(rev*tooth). 

• Axial depth of cut: 1, 3, 5, 7, 9 and 10 mm. 

• Radial depth of cut: 0.4, 1.6, 2, 2.4, 2.8, 3.6 and 4 mm. 

Utilizing these input parameters, a total of 81,648 simulations were conducted. 

This study evaluated a number of machine learning algorithms. Root-mean square error 

(RMSE) and mean absolute error (MAE) are two commonly used metrics for evaluating such 

algorithms.   

• Root Mean Squared Error (RMSE): 
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RMSE is a measure of how well the machine learning model fits the data, similar to 

MSE. However, RMSE is the square root of the average squared difference between the 

predicted values and the actual values, which makes it more interpretable in the same units as 

the target variable. The equation for RMSE is: 

RMSE = √
∑ (y

pred
-y

actual
)
2n

i=1

n
                                                   (5) 

Where n is the number of observations in the test set, y_pred is the predicted value  

of the target variable and y_actual is the actual value of the target variable. A lower RMSE 

indicates that the model is better at predicting the target variable. However, it is also sensitive 

to outliers in the data. 

• Mean Absolute Error (MAE): 

MAE is another measure of how well the machine learning model fits the data. It is the 

average absolute difference between the predicted values and the actual values. The formula 

for MAE is: 

MAE = 
∑ |y

pred
-y

actual
|n

i=1

n
                                                       (6) 

MAE is less sensitive to outliers than RMSE because it does not square the differences 

between the predicted values and the actual values. However, it may not be as interpretable 

as RMSE because it is not in the same units as the target variable. 

Table 1. Comparison of various ML algorithms 

 Random Forest Random Tree KNN MLR 

RMSE 0.1070 0.1852 0.1078 1.4068 

MAE 0.0426 0.0313 0.0462 1.1891 

As previously discussed, the training-data utilized for the development of the machine 

learning models in this study consisted of 65% of the simulation data, while the remaining 

35% was reserved as test-data. As depicted in Table 1, the Random Forest algorithm 

demonstrated superior performance compared to other machine learning methods. 

Consequently, this algorithm will be employed as the primary fault detection mechanism in 

the process. 

4. RESULTS AND DISCUSSION 

By using machine learning algorithms, this method can gain several key insights into 

the detection of tool-related faults in milling processes. As described above the Random forest 

algorithm has been used in order to detect tool-related faults in milling processes. It has been 

tested 50 different scenarios for each input parameter in order to determine whether or not 
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this method is accurate for vast range of input parameters. Approximately 50 simulations were 

conducted in order to determine how well the algorithm identified faults associated with  

the tool radius, as an example. These simulations involved deliberately changing the radius, 

teeth number, helix and rake angle of the tool in the simulation, as well as executing machine 

learning models in order to test how well the method would perform for varying parameters 

related to the tool. The results of this method are presented in Fig. 2: 

  
(a) (b) 

  
(c) (d) 

Fig. 2. Correct vs incorrect fault detection of (a) Tool diameter, (b) Teeth number, (c) Tool helix angle and  

(d)Tool rake angle 

Figure 2. illustrates the percentage of correct and incorrect prediction by using 

mentioned algorithms in various situations. For instance, Fig. 2a first column shows the 

percentage of correct prediction of tool diameter which was 10 mm. Moreover, Fig. 2a.  

The first column shows that the algorithm can predict the cutting tool diameter with  

10(mm) can be predicted with 96% accuracy. Each column of every graph shows the correct 

prediction percentage of that parameter. It is evident from Fig. 2 that the tool parameters that 

have an enormous impact on the cutting force have been identified with higher precision.  

The figure above indicates that the number of incorrect predictions for helix and rake 

angle is higher than for the other two parameters (e.g. tool diameter and tooth number). This 

is because helix and rake angle appear to have less impact on cutting forces compared to the 

tool diameter and tooth number. Aside from that, all of the tool related faults detected within 

acceptable precision.  

The cutting forces were conducted using Piezo-electric Dynamometer 9257BA, 

amplifier and data acquisition NI USB-6259. 16 and 20 mm Solid Carbide end mill cutter 

with 4 flutes and 7075-T6 aluminum and 1050 steel were used as workpieces during the tests. 
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Fig. 3. Measurement setup 

 
Fig. 4. One revolution of measured cutting forces 

Figure 4 illustrates the measured cutting forces with dynamometer. The cutting 

parameters which have been used for conducting this test are spindle speed is 2000 rpm, Feed 

is 1600 mm/min, axial depth is 4(mm), radial depth of cut is 4 mm and the workpiece material 

is 1050 steel. This measured data has been used for input of proposed algorithm and the ML 

algorithm can predict that the tool diameter is 16 mm with 4 cutting flutes, helix angle is 35° 

and rake angle is 7°. The predicted tool geometry parameters are the same as the tool which 

has been used for conducting this test.  

Figure 5 shows the other measured cutting forces. In this test spindle speed is 1000 rpm, 

Feed is 1000 mm/min, axial depth is 7 mm, radial depth of cut is 2 mm and the workpiece 

material is 1050 steel. The proposed algorithm predict that tool diameter is 20 mm with 4 

cutting flutes, helix angle is 30° and rake angle is 5°. The predicted tool geometry parameters 

are the same as the tool which has been used for conducting this test. 

15 tests have been conducted to assess the accuracy of the proposed algorithm, which 

includes four parameters of tool geometry: diameter, tooth number, helix, and rake angle  

of the tool. The algorithm yielded 56 correct predictions of tool geometry parameters, 

showcasing an impressive 93% accuracy by utilizing real measured data. 
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Fig. 5. One revolution of measured cutting forces. 

5. CONCLUSION 

The main goal of this paper has been to show how using process simulation-based 

machine learning algorithms can effectively monitor and detect tool-related faults during 

milling processes. The approach proposed in this study eliminates the need for expensive and 

time-consuming lab tests by training machine learning models with milling process 

simulation data. 

Throughout this investigation, a range of machine learning algorithms underwent testing 

using two evaluation metrics. Notably, the random forest algorithm demonstrated superior 

performance when contrasted with alternative methods for handling such input and output 

parameters. 

Based on the outcomes of this research, the algorithm is capable of achieving a 94 

percent accurate prediction rate for tool-related faults. Attaining such a high level of accuracy 

in predicting tool-related faults solely through the utilization of simulation data can enhance 

the viability of monitoring systems. This method holds the potential to eliminate the necessity 

for a substantial volume of tests, a common requirement in typical monitoring applications. 

These findings have been supported by actual measurement data, with a notable accuracy rate 

of 93 percent in the predictions. 

Although the results are promising, it is essential to continue with further research and 

improvements. To elevate the overall performance and reliability of the fault monitoring 

system, future endeavours could delve into integrating supplementary data sources and 

adopting advanced machine learning algorithms. Furthermore, the scope of this work can be 

expanded to encompass process and machine-related faults in forthcoming studies. 

This paper has resulted in a notable stride forward in the realm of tool condition 

monitoring through the application of a process simulation-based algorithm. By streamlining 

the detection of tool-related faults in a more efficient and cost-effective manner, the demand 

for extensive laboratory testing has been minimized. This approach holds the capacity to bring 

about a transformative impact on the domain of tool condition monitoring, thereby enhancing 

manufacturing processes as a cohesive whole, all the while fostering ongoing research and 

development efforts. 
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